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Abstract

We define the Berry phase for the Heisenberg operators. This definition is motivated by

the calculation of the phase shifts by different techniques. These techniques are: the solution

of the Heisenberg equations of motion, the solution of the SchrSdinger equation in coherent-

state representation, and the direct computation of the evolution operator. Our definition

of the Berry phase in the Heisenberg representation is consistent with the underlying super-

symmetry of the model in the following sense. The structural blocks of the Hamiltonians of

supersymmetrical quantum mechanics ("superpairs') [1,2] are connected by transformations

which conserve the similarity in structure of the energy levels of superpairs. These trans-

formations include transformation of phase of the creation-annihilation operators, which are

generated by adiabatic cyclic evolution of the parameters of the system.

1 INTRODUCTION

The equivalence of the SchrSdinger and Heisenberg pictures in quantum mechanics is something

that is taken for granted. The specific choice of the SchrSdinger, Heisenberg or interaction picture

is usually regarded as a matter of convenience. Berry phase was defined initially and mostly for the

SchrSdinger picture as nonintegrable phase factor appearing in the wave-function after (adiabatic)

evolution of the system's parameters. Here we investigate how one should define the analog of the

Berry phase in the Heisenberg representation.

The traditional introduction to Berry phase includes the following construction. The Hamil-

tonian for the particular system H(_) is introduced, where the set of parameters, _, is considered

to be changing adiabatically with time. Until now, most of the applications had in mind the

discrete, though maybe degenerate, spectrum of the Hamiltonian, for all values of the paramters.

Then, after the adiabatic cyclic evolution of the parameters, each eigenstate Cn of a corresponding

stationary problem

H(_)¢,_ = E,(_)¢, (1)
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acquires a nonintegrable phase: _n --* ei_"_k,. This phase usually admits geometric interpretation

in terms of some contour in parameter space.

In the Heisenberg representation, the operators of observables, and not the eigenstates, do

evolve in time. One can assume, that for particular observable, a(t), the cyclic evolution of

parameters results in the following relation after the period, T:

a(r) = :a(O)S, (2)

where S is a unitary operator.

One supposes, that the operator, St, in a basis of the eigenfunctions of the Eq. (1) has the

e i_° 0 0 -.. )

S* 0 ei*x 0
= : : . (3)

0 • • • e i_"

form:

It represents what can be naturally called matrix of a Berry phase in Heisenberg picture,

although now it is a unitar_ operator, not a number. The rest of this paper is dedicated to

demonstrating the usefulness of this notion.

We shall demonstrate for a simple exactly solvable model that this operator can be defined

consistent with the (super)symmetry of a model. We cannot prove it in a general way, though we

believe that the following proposition is true for any Hamiltonian H, for which Berry phase could

be defined. Namely, if there exists the Hamiltonian, H1 (_(t)), after adiabatic cyclic transformation

of its parameters it will be transformed into new Hamiltonian, //2, which is a superpair to the

initial Hamiltonian, H1. The adiabatic theorem reappears in this approach as the identity of the

eigenvalues of//1, and//2 (however, the degeneracy of zero eigenvalue, in general, may change).

The wavefunctions, may, however undergo some unitary transformation.

This is in accord with general ideology of supersymmetric quantum mechanics, which usually

includes the compound Hamiltonian, H, formed by two simpler Hamiltonians,//1 and H_ [1,2,3,4],

.[., 0]0 H2 (4)

The properties of the Hamiltonians,//1 and//2, are closely related. Normally, these Hamiltonians

have identical spectral structure, but, perhaps, only a finite number of energy levels. Consequently,

almost all of the levels of the Hamiltonian H are doubly degenerate.

Previously [5], in this context, we studied the supersymmetric structure of the Jaynes-Cummings

Model (JCM). The formal introduction of the supersymmetry in the JCM includes the replication

of the JCM with a trivial phase transformation performed on the creation-annihilation operators

of the boson:

a --,, e_'_a, a t --_ ate -_ (5)

When q_ is a real function of time, the Hamiltonians,/-/1 and//2, have identical spectra, and all

the energy levels of the Hamiltonian H are doubly degenerate.

The physical meaning of the phase shift, _b, is not clear. It would be desirable to interpret it,

analogous to Berry's interpretation of the Aharonov-Bohm effect [6], as a manifestation of a Berry
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phase. Indeed, the JCM has a nontrivial Berry phase with potentially observable ramifications

[7,8]. The interpretation of the phase shift (5) as Berry phase for some cyclic evolution in the

JCM is not yet proven, however we demonstrate that this is true for somewhat simpler model of
Section 3.

Thus, for our purposes we seek the transformations of phases of the Hermitian operators

rather than wavefunctions. Therefore, we calculate Berry phase for our model using both the

SchrSdinger formalism for the wavefunctions and the Heisenberg formalism for the operators. Also,

we calculate the phase shifts by an explicit expression of the evolution operator through SU(1,1)

group operators. Both approaches are shown to be equivalent as the result of our analysis.

Because performing the adiabatic cyclic evolution of the system can be, under certain condi-

tions, a valid quantum measurement, the result of the paper can be put in other form. Namely, the

distinguishability of the systems described by the Hamiltonians forming a superpair is equivalent

to the nontriviality of the Berry phase obtained during a cyclic evolution of the system's param-

eters. The separate measurements of the Berry phase of those two systems during the evolution

distinguishes these systems.

The structure of paper is as follows. In Section II, we make a general definition of the cyclic

evolution in the Heisenberg representation. In Section III, the supersymmetric family of Hamil-

tonians, similar to the Hamiltonian for degenerate parametric two-photon optical interaction, is

considered. The calculation of the evolution of the Heisenberg operators shows that besides the

dynamic phase shift (called self-modulation of phase in nonlinear optics) and amplitude change

(amplification and de-amplification), there is an additional term. Unlike the previous ones this

term has a nonzero value in the case of adiabatic cyclic evolution. However, the explicit proof

of the identity of this phase to the phase, which is obtained by the wavefunction in course of

adiabatic cyclic evolution is required. This is done by obtaining the explicit WKB solution of

the SchrSdinger equation in the coherent state formalism and comparing the results (Section IV).

Following the recent tradition supported by the papers of Aharonov and Anandan, and Samuel

and Bhandari [9,10] we identify the "slow" physical time of adiabatic evolution as a parameter of a

closed contour. This definition is supported by the calculation of the Berry phase from Heisenberg

equation of motion and through the explicit expression of the evolution operator in Section V.

2 BERRY PHASE IN THE HEISENBERG PRESEN-

TATION

We consider the Hamiltonian, H, with time-dependent parameters, _(t):

H = H(_(t)). (6)

We assume that periodicity and adiabaticity of the evolution of the Hamiltonian can be represented

in two ways. First, one can follow the evolution of H(t) as a function of the time-dependent

parameters. In this case, the Hamiltonian will undergo trivial transformation after the evolution.

H(O) = H(T) (7)

The second way is to consider the change of the Hamiltonian as an observable with physical

meaning of energy under the action of the evolution operator U(t) which is engendered by the
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Hamiltonian H (t)

fl(t) = U-I(t)H(O)U(t) (8)

tU(t) = Texp(i H(t)dt) (9)

In this case the transformed Hamiltonian/t(T) can be different, unitarily equivalent to the

initial Hamiltonian.

[-I(T) = U-I(T)H(T)U(T) (10)

The spectra of these Hamiltonians are therefore identical. However, other features can be

different. This distinction can be extremely important if there are lines of singularity or other

topological complications in the space of parameters.

In the case of adiabatic cyclic evolution, this operator doesn't depend on particular law of

evolution of the system's parameters and we shall define this unitary operator as Berry phase in

Heisenberg representation. It implies, that the difference from/t(T) and H(T) can be expressed

in terms of certain phase factors (eigenvalues of the operator U(T)). As a rule, they appear for

a certain components of the Hamiltonian H. These phases are closely connected with the Berry

phases in Schrhdinger representation, indeed, in the example of the Section III they are identical.

The fact that the Hamiltonians H(t) and/_(T) are forming a superpair is of primary impor-

tance. One of the simplest ways of representation follows from Eq. (7), which connects H(T) and

/I(T)
2

H= 0 [-I(T) = U-1 (T)v/-H(0) 0

One can then demonstrate using the formalism of that relationship implies superstructure [2,3].

This relation holds only in the case of nonnegative spectra of the Hamiltonians. Thus, we restrict

ourselves by the Hamiltonians bounded from below, in which case we shift the zero level of energy

to avoid negative eigenvalues.

The superstructure could be introduced in more sophisticated ways. A particular example

would be demonstrated as well. The paper is dedicated to the connection between Berry phase

and supersymmetry on the example of the simple model. More complicated examples such as the

Jaynes-Cummings model (JCM) will be studied elsewhere.

In the paper [11], the authors proposed the generalization of Berry's concept, interpreting

their phase, a factor similar to our symbol V (Eqs. (20)-(21)), as a gauge transformation of the

wavefunction. It is induced by the reparametrization of the Hamiltonian. The main result of

this paper can be formulated in our language in the following way. The gauge transformation of

Wilzcek and Zee while being applied to the Hamiltonian, regarded as observable, can result in

other Hamiltonian, even if the evolution is adiabatic and cyclic. However, both Hamiltonians are

unitary equivalent and the observable quantities are identical for both of them. The adiabatic

theorem in the general quantum mechanics formalism is represented by supersymmetry in our

paper and by the gauge invariance in their formalism.
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3 BOSONIC FIELDS WITH SELF-ACTION: THE SU-

PERSYMMETRY OF THE SQUEEZING HAMILTO-

NIANS

The problem is formulated for the simple model of two identical noninteracting bosonic fields

described by the Hamiltonian

H1 : wata]
+ [_[a2 I ei(¢+O) 0 I0 e_(_+e)

+ IAlat_ 0 e-_(_+_) 1-c O) w (12)0 c

The superpair of this Hamiltonian is

1-12 = wata] + I,qa2 (

+ IAIat2 (

e i(_¢°) 0 )0 e i(_+e)

e -i($+6) 0 )0 e -i(_'+°) 1-c O) (13)+ 0 c

The constant c is defined from the equation

The system described by the Hamiltonian H in the form (4), where HI and//2 have the form

(12) and (13), respectively, are supersymmetric. This supersymmetry is generated by the following

supercharges [5]:

(0 q,)Q2=H (14)Q= q2 0 '

(o ( o ,:1o,q' = I,Xle'6 o a + (1 - c),,,e-'* o

( ) (0 e i¢ 0 _ a* (16)
q2 = I,_l_'° 0 a + (1 -- c)we -'_ 0

H1 = ql q2 1t2 -- q2ql

The second supercharge has the form

0 -iql )Q2 = iq2 0

(17)

(18)
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This finishes the formal description of supersymmetry. The procedure of assigning a super-

symmetric structure for an initial model remind our prescription for the JCM [5]. One should

make a constant phase shift of the creation and annihilation operators and consider a replica of

the initial system with transformed operators as a superpair for the initial system.

The described procedure has an obscure physical meaning. To clarify it we explicitly describe

the unitary operator, which connects the components of the Hamiltonian in subsequent sections.

4 THE OPERATOR BERRY PHASE

Now we are prepared to study the Berry phase of the Heisenberg operators. We suppose the three

parameters w, ReA, ImA* to undergo adiabatic periodic change in time. First, we calculate the

nonintegrable phase attained by the wavefunction of the model, described in previous Sections, in

coherent-state representation. Below, we shall demonstrate, that all the components of the Hamil-

tonian H, defined by Eqs. (12) and (13) can be obtained from one component of this Hamiltonian

by applying the adiabatic cyclic evolution of the parameters of the system. Thus, the superpairs

are connected by a unitary operator, which we call the Berry phase in Heisenberg representation.

A single component of the Hamiltonian H, corresponds to the SchrSdinger equation

idu = [wata + Aa 2 + A*a t2 + holU (19)

The contribution of the scalar term ho(t) is removed by the transformation

/g = u_xp(i ho(,-)dr) (2o)

The wavefunction V is represented in the coherent state formalism by

/V(a.,_,t) = (alTexp(i (h- ho)dr)l/_ ) (21)

where T is time ordering and [a), 1/_) are coherent states:

_1_): _1_)_1_)=(,_1at= (_1_*

For the quadratic Hamiltonian (5) the calculations can be done explicitly.

V(a*, fl, t) of the Eq. (19) in the coherent-state formalism has the form

. I 1 2r/*V(_',_,t) = ff(t))-l/2exp[ a'_ + _ _ + _ T]

(22)

The solution

(23)

where a,b are the parameters of the initial state. As usual for coherent-state representations

[12], the solution is expressed in terms of auxiliary functions _(t), r/(t) which satisfy the following

system of the equations [13]:

_(t) = i(_r/- 2r/_)

/_(t) = i(A*{- r/w) (24)
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with the initial conditions _(0) = 1, r/(0) = 0.

The following system of equations is valid for the functions _, r/

O - _q + [id, -- ia,_ + _o2 - 4lAIZ]_ = O.

_. .,_
- _ + [id,+ '_X + _ - 41AI2]_= o. (25)

Below we shall demonstrate that WKB-solution of these equations will provide a multiplier

with a nonintegrable phase.

The Hamiltonians //1,//2 include the creation-annihilation operators distinguished by some

deterministic phase shift. For a description of the evolution of these operators we use one of

the four components of the Hamiltonian H, because all four Hamiltonians are independent and

unitary-equivalent to each other,

h = wata + )ka 2 + )Ca t2 + ho,

= I,,,le_(*+o)

The Heisenberg equations have the form [14],

(26)

h = i[h,a]

h t = i[h,a t]

h = -i(wa+ 2_*a t)

h t = i(wa t +2)ta). (27)

It is again assumed that the parameters w, A, A* are slowly varying periodic functions of time.

The operators a, a t are satisfying the following equations:

)_° _°

a - X:a + [id,- iwx:- + _o2 - 41Al2]a= O,

fit _ _hI + [-ido + iw_ + w 2 - 4[AI2]a t = 0. (28)

One observes that equations (25), for the functions (, r/are identical to the system of equation_

(28) for the operators a t, a. By substitution

5a=bexp(l/t dr) (29)

one obtains for operator b and its Hermitian conjugate, if the terms

(j¢/$.)2, _(,_./$.) in the equation for b are neglected
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.,_-
+ [i_ - ,o_- + _,2__41Ai2]b_ O,

+ [-i_ + i_-_ + _2 _ 4lAl_lb, _ 0._,

The WKB approximation for the solution of Eqs. (28) yields

b- b2-_exP( fot(f(r)+i¢(r),d7)+ -'_exp( fot(f(r) -i¢(r)dr),

with

(30)

(31)

f_2 = _2 _ 41,Xl2

_(7)P

f(t) = 4@2_4p2),/2 = 4(_-4)1/2,p= I_1,

¢(t) = w 4f_ - 4f_ dt' (32)

For cyclical evolution of the parameters the contribution of the function f(t) is zero, because

it is an exact differential. However, the integral of the function ¢(t) yields the Berry phase.

t

_bn = Jc (33)_-_dt,

and Cn is given by the same expression with k _ k = ¢ + 6. The initial conditions can be

chosen in such a way, that the phase transformations of the operators take place as a result of the

evolution

a ---* ae i_B, a t ---+ale -ica (34)

then

h _ h = wata + Aa2e 2i¢'B + A'(al)2e -21_, (35)

The calculation of the Berry phase for the model Hamiltonian H is now complete.

One observes that the superpairs H1 and//2, composing the supersymmetric Hamiltonian H,

are distinguished by the Berry phase. As the Hamiltonian H2 transforms as a result of cyclic

evolution, the phases (¢ + O) and (¢ + O) evolve in a different way. Berry phase is independent of
the particular law of evolution, nevertheless it depends on the choice of the contour in parameter

space. The contours can be chosen in such a way that the following relation is valid [15].

¢+o+¢B =$+6,$+6+$B =¢+o

or

Cs = -¢s = (¢ - ¢) + (6 -O) (36)

Now we have found the geometric phase for the Hamiltonian H using the Heisenberg repre-

sentation.
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5 THE CALCULATION OF THE BERRY PHASE US-

ING EVOLUTION OPERATOR

We have shown that creation-annihilation operators obtain phase shift according to Eqs. (34)-

(35) as a result of adiabatic cyclic evolution which is identical with the Berry phase gained by the

coherent phase. The substitution of the transformed operators in the Hamiltonian h gives

h --* hp = wa*a + )_a2e 2i* + )_a+2e -2i¢ + h0 (37)

This result can be obtained directly from computation of the action of evolution operator on
Hamiltonian H.

One can rewrite the Hamiltonian H in the terms of SU(1,1) operators [16,17]:

where

h = wKo + AK_ + A'K+,

Ko = 1/2(ata + aat),K-= a2, K+ = (at) _

[K0, K+] = +K+,[Ko, K_] = -K_, [K+,K_] = 2K0.

To get rid of the T-exponent in the evolution operator:

(fU = rexp h(r)dr),

one can rewrite it in the form [12]:

(38)

(39)

U = e _'K+ e_K°e "rK-. (40)

This decomposition expresses the evolution operator in terms of three time-dependent functions

a(t), 13(t)andI(t). Using the commutation relations one obtains the following equations for these
functions:

a - afl + ct=Te -_ = -i#"

- 2a_e -O = -iw

ale -° = i#.

The quantity a(t) satisfies the equation

& + iwa + i#a 2 = -i#',

which can be rewritten after the substitution a = (1/i#)((b/¢)in the form

+ (b( -_- + iw) -1_12¢ = 0
#

= +<]
#

+ _[J - 41_12+ i_,_ - i@ = o.

(41)

(42)

(43)
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The equations (43) coincide in the form with the equations (25), (28) which were our starting

point of obtaining expression of the Berry phase. The phase given by the equation (43) is identical

to the Berry phase as defined above. Now one can study the behavior of the functions a, fl, 7 under

cyclic adiabatic evolution of the parameters. The function _: is the solution of the equation with

the periodic potential. This implies that this function is quasiperiodic:

a(t + T) = e_*ra(t), (44)

where ¢2' is independent of t. Thus the ration k/a is a periodic function as well.

The function _8 = -i f d_- ln¢ is not periodic. According to Eq. (32) after the cyclic evolution

changes by a constant q_

fl --, fl - i¢-r. (45)

The function 7 is not periodic as well, however, it is not very important to us here.

One can now investigate the transformation of the primary Hamiltonian h in course of evolu-

tion. Since we decomposed h in the sum of three operators K0, K+, K_, we can consider the action

of the evolution operator on the single terms of the sum. It is quite necessary for Eqs. (41) not

to be symmetrical with respect to the functions a,//, 7. We can use the decomposition from Eq.

(40) only for the study of the transformation of the operator K_ :

I4_(T) = U-I(T)K_(O)U(T). (46)

The initial conditions of the evolution were chosen as a(0) = /_(0) = 0 as a consequence of

periodicity it implies a(T) = 0. This means that e_'K+ and e"_K- do not contribute to the periodic

evolution of group operators. The only term with which changes is e_K°. Taking into account

their relation fl(T) = --¢T one has

R_(T) = e_Ta'_Ko(O)e-2_*Ta'°= e-_'*T Ko(O). (47)

Similarly, choosing a different order of multiplication in the decomposition (40) one gets the

transformation property for the other operators.

R+(T) =
K0 = K0(0). (48)

Consequently, the Hamiltonian H is transformed under the evolution as

h ---, he = wKo -'_ Ae-2iCTK- + A*e2iebrK+

= wata q- Ae-2i¢Ta 2 -4- A*e2iCT(a?) 2 -I- ho. (49)

This expression is the same one we obtained from the WKB solution of the operator equations

(28). The phase shift is identical to the phase shift gained by coherent-state representation of

the wavefunction. The reconciliation of all methods proved the correctness of the definition of

Berry phase in Heisenberg picture. Because all of the components of the Hamiltonian H can be
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obtained through the constant phase shift of the creation-annihilation operators or sign reversal

of the phase factors O, ¢ we finish up with the proposition that the trivial phase shifts in the

supersymmetric Hamiltonian can be regarded as the Berry phases.

6 CONCLUSION

The present paper proposes the following definition of Berry phase in Heisenberg representation.

Berry phase is the unitary operator connecting the Hamiltonian of the system with the initial

Hamiltonian after adiabatic cyclic evolution of the system's parameters. We study the simplest

model in which this unitary operator is independent of the particular quantum numbers of the

system and reduces to a certain c-number phase factor. This definition is motivated by the iden-

tification of this number to the adiabatic phase factor gained by the wavefunction of the system

in coherent-state representation. Since the model is exactly soluble, the direct computation of the

evolution operator is possible and it confirms the calculations made by two other different meth-

ods: the WKB solution of the Heisenberg equations and the WKB-solution of the SchrSdinger

equation in coherent-state representation. This definition allows us to interpret the supersymmet-

ric compound Hamiltonian as if it has been formed by images of the initial Hamiltonian, obtained

as a result of an adiabatic cyclic evolution over a different contours in a parameter space.
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SECTION 7

INTERACTION OF LIGHT AND MATTER
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